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1. Intreduction

1.1

Since the work in the late 60’s by B. B. Mandelbrot and J. W. Wallis [1], a
novel class of mathematical functions known as “fractals” has enjoyed

_great popularity [2-5]. Fractals are found extensively in nature, and fractal

surfaces are produced by a number of basic physical processes like erosion,
aggregation, and turbulent flow. These processes modify shape through lo-
cal iterative actions and thus produce fractals as an end result [4,6,7].
Fractal models are currently in use in a number of areas of image analysis,
such as shape from texture [7-9], texture analysis and segmentation
[10,11], interpolation of terrain data [12], automatic target recognition
[13,14], and medical image analysis [15,26] to name a few. The realism of
computer-generated images using fractal models strongly suggests that the
model captures relevant perceptual information of the image that appeals to
our visual processing system.

Fractal Model and Dimension

A fractal can be loosely defined as a set whose only consistent description
of its metric properties requires a noninteger dimension greater than or '
equal to the standard intuitive definition of a set’s dimension. This leads to
the notion of the “fractal dimension,” which is the consistent measure of the
set’s roughness and irregularities [7], and has been shown to be twice as ac-
curate as any previous reported measure for perceptual roughness [17].
Fractals are classified into two types: deterministic and random, and
whereas deterministic fractals show self-similarity over all scales, random
fractals are self-affine over a limited range of scales [5]. A sampling of the
images one can generate with either type can be found in the references
[2-5]. Random fractals, which are of most interest to the scientific commu-
nity, will be the primary concern of this report.

A useful mathematical model for random fractals, as proposed by
Mandelbrot and Van Ness, is fractional Brownian motion (fBm) [1], which
is a generalization of the familiar Brownian motion. The model is an exten-
sion of classical Brownian motion and encompasses a larger group
of phenomena.

Let V(x) be a self-affine fBm with a Euclidean dimension (E) of one, with
the increments having zero-mean Gaussian distribution. The variance has
the following form:

(Vix +dx) = V)P o< ax [ (1)

and has a fractal dimension Df given by Df = E + 1 — H, where the brackets
“(” and “)” denote the ensemble averaged over many samples of V(x). H




is often called the “persistence” parameter, since it is proportional to the de-
gree of correlation and is bounded above by one and below by zero. The in-
crements are stationary and isotropic, depending only on the difference in x,
and for H = 0.5 we have classical Brownian motion.

(Vix +dx) = V(x) ") o< x| . ¥)

V(x) shows a statistical scaling behavior; i.e., if x is changed by the factor k,
then the increments of V(x) change by the factor k raised to the H.

(@v(ic®) o< (avi . 3)

This nonuniform scaling is different in the two coordinates x and V(x) and
gives the fBm its self-affine property, unlike the self-similar property of de-
terministic fractals [27]. This will prove important in the selection of a vi-
able fractal dimension estimator [5].

The extension to higher dimensions leads to a fractal Brownian surface
(fBs), which holds our current interest since it is an excellent model of the
earth’s terrain [7,12]. Let V(x,y) be a self-affine fBs with a Euclidean di-
mension (E) of two with the increments having zero-mean Gaussian distri-
bution. The variance again has the following form:

(Ve +dr, y +dy) - Viey) P o< d® + [ @)

and has a fractal dimension Df given by Df=E+1-H.

The characterization of a generalized power spectrum for this random pro-
cess is an extension of the concept of spectral density and the Weiner-
Khintchine relation to nonstationary noise [18-20] and takes the form of a
random-phase Fourier transform, with the expected value of the power
obeying the relationship

S(f)e 7. BN )

Due to the nonstationarity of fractal Brownian processes, a power spectrum
cannot be formally defined; however, the increments (derivative) of the
random process are stationary, and therefore a power spectrum of the incre-
ments can be well-defined. Using this property, Flandrin [21], Keshner
[22], and Wornell [23] substantiated the above form of the power spectrum.
The decay parameter B is related to the fractal dimension and to the persis-
tence parameter H by

B=2H+EandDf=E+ 1 -H,




1.2

where E is the Euclidean dimension and Df the fractal dimension. If any
straight-line cut is taken in the x or y direction of a fractal Brownian sur-
face, the spectral density will have the power law in equation (5); this im-
plies that a two-dimensional (2-D) spectral density should behave as

S(f) e =z =F 7 ©6)
f2H 2

A
for spatial frequencies k and [, f = (k2 + 12) .

A great deal of work has been done in both synthesis and analysis of
fractals using this power spectrum relationship [9,13,28,29].

Synthetic Fractal Surfaces

To quote H. E. Schepers et al [24] “production of a truly fractal signal is it-
self a nontrivial exercise.” This truth became very apparent in this study as
I found that the only reliable measure of a fractal was careful development
of the spectral components, comparison to other authors’ images and sur-
faces, and a portion of faith. The two algorithms used for generating fractal
surfaces were the mid-point displacement (MPD) and power spectrum den-
sity (PSD) methods. Both are currently popular in the computer graphics
community for synthetic scene generation [5,16,27]. The MPD method is a
recursive technique first applied by Weiner in the 1920’s in modeling
Brownian motion. This is a “quick and dirty” algorithm for modeling
fractals—quick because of the reduced complexity and execution speed and
dirty since it sacrifices mathematical accuracy (and whose result can be
seen as visible artifacts on a surface when properly shaded). One should see
Pietgen and Saupe [5] for the mechanics of this algorithm as well as some
interesting renderings. The PSD method is elaborated on by Voss
and others [5,27]. Basically, one creates a discrete Fourier transform (DFT)
of the real image u(m,n) for a surface with the 2-D DFT pair given as

N=1 N-1

v(k)= X X ulm ) WKW O0<Kk ISN -1 7)
m=u n=
1 N Al —kmiz,—In
u(m,n) = —5 > 2 k)W W 0<mn<N-1, (8)
N2 i=0 120
-2jn
WN=exp( N ) , &)

with the phase information derived from a random uniform distribution on
21. When the DFT coefficients are restricted to have the form




1.3

(vl ) o mﬁﬁ ’ (10)

a single realization of the fractal surface will be generated. Alternatively,
the form

2 1
(k2+9)""

will generate the ensemble average. Here H = 3 — Df and () denote expected
values. For a real image of a fractal surface we must also observe the com-
plex conjugate symmetry,

k) =v*(N-k,N=1) 0<kI<N-1; (12)

therefore, our phase requirement—although derived from a random uni-
form distribution over 2n—has to be zero at the following points: (0,0),
(O,N/2), (NI2,N/2), and (N/2,0) [5,30].

One can readily observe that this model imposes a bandlimited spectrum,
which introduces problems in producing real fractals and especially those
with higher fractal dimension values. A second problem is the periodic na-
ture of the surface image created by the inverse fast Fourier transform
(FFT). This periodicity “perceptually accentuates the presence of the first
spatial-frequency harmonic” [29] of the DFT. The N/2 x N/2 regions of the
surface were used for the analysis, as suggested by Voss [31], hopefully to
correct this problem. '

The MPD surfaces will serve as a useful comparison to the more reliable
PSD surfaces in both the fractal dimension calculations and three-dimen-
sional (3-D) renderings of the surface images and DFTs. Also, one must
question what effect the artifacts of the MPD method have in determining
the fractal dimension of the surfaces created. I was very interested in the re-
sults of the estimator with respect to the single-realization PSD surfaces
since these surfaces are more representative of natural relief than the en-
sembles and, therefore, validate the estimator’s performance.

Fractal Dimension Estimation

Several techniques have been developed to estimate the fractal dimension
as researchers probe for optimality with respect to a particular fractal set
[22,23,25]. All the techniques attempt to measure a scaling parameter asso-
ciated with either a self-similar, statistically self-similar, or self-affine
fractal (see Pietgen and Saupe [5] for more). The simplest technique, and
quite general in nature, is the Mass Scaling (MS) technique, which makes




no assumptions about the underlying process that created the fractal. In the
application to fractal surfaces, the MS technique measures the mass about
some central point, i.e., pixel (x,y,z), by counting the number of pixels M(J)
that fall within cubes of varying side I. The power law requirement for mass
distribution is given by

M=k~ , (13)

where Df is the fractal dimension and is found by a least-squares fit on the
plot of log (M) versus log (I) [5,29,31] and k is the proportionality constant. -

Despite improvements to the earlier work of Keller et al [11], the MS tech-
nique has some shortcomings; first, the self-affine property creates prob-
lems in determining the fractal dimension since scaling may be different in
each dimension of a multidimension space as elaborated on by Voss and
others [5,31]. Although this problem is cleverly addressed by Moghaddam
[29], it is still not completely resolved. Secondly, the MS method is not re-
liable in the important region-spanning fractal dimension 2.0 to 2.2, which
is the predominant range for fractal dimensions of the earth’s natural relief
[5,9] and is completely unreliable at very high fractal dimensions associ-
ated with tree clutter [13,29].

The power spectrum method (PE) is based on the spectral model of fractal
Brownian motion, which is more complex and time consuming, but has
given excellent results in texture segmentation [7,28] and yields the least
biased results and lowest variance in estimates of the fractal dimension re-
gardless of the underlying model used to create the fractal set [24].

The PE estimator in this report will determine the spectral decay parameter
B by logarithmic least-squares fit for log (power) versus log (radial fre-
quency) by first taking a local 8 x 8 window, zero padding to 16 X 16, and
computing the FFT. The DFT coefficients are used to calculate the total
power of a single or multiple occurrence of a specific radial frequency, and
then a logarithmic plot and least-squares fit are applied. The slope (B) is
then determined and used to calculate the fractal dimension, which is
mapped back to the central four pixels of the 8 x 8 window. Finally, the
window is slid by two pixels and the process repeated.

The type of windowing function applied to a local sample of the test surface
is an area of debate among researchers. The Gabor window applied to the
PE method has proven to be very accurate on test images [9]; however, this
windowing involves the extra step of convolution that magnifies execution
time, albeit with the gain of improved spatial-frequency resolution over the
domain of fractal surfaces—i.e., surfaces with fractal dimensions between
2.0 and 3.0. In this study, I am not concerned with performance in the
higher fractal dimension regions and, in reality, optimality is not measured
solely by the accuracy of the algorithms over the entire range, but by the
practicality of implementation, speed, and confidence in estimation accu-

9




2. Procedure

10

racy over limited ranges. Although a rectangular window has shortcomings
due to higher sidelobe energy, the implementation is simple and favors
higher frequency resolution. The size of the window was chosen as a com-
promise between spatial resolution improvement over larger windows and
the decreased likelihood of including nonstationary regions when tested
against real surfaces. Also, 8 X 8 windows seem to be the breakpoint in the
variance of the estimate, with windows smaller than 8 X 8 being unreliable
because of the large variance of the estimated fractal dimension.

The zero padding effectively gives more samples of the 2-D DFT envelope,
which is useful in the least-squares fit and is amenable to the FFT calcula-
tion. For the decay parameter B calculation, Pentland [7] performed a least-
squares fit in the k and / directions of the discrete spatial-frequency plane
only, then calculated the By and By parameters, followed by averaging
these B values to determine the fractal dimension. He relied on the fact that
most natural fractals exhibit only slight anisotropy [7,16]. Moghaddam [29]
improved on the technique by using a weighted least-squares fit based on
the number of occurrences of a particular radial frequency in the discrete
spatial-frequency plane. The estimator used in this study only modified
terms due to a single occurrence of a radial frequency (spatial frequencies
where k = [), giving these terms equal weight, and although counter-
intuitive, gave equivalent results as a simple deweighting algorithm that
removed single occurrences of a radial frequency in the DFT before the
least-squares fit. The mapping to the central four pixels is based on the ob-
servations of Yokoya et al [12]. Their results showed that although the in-
tensity of the fractal surface image does not vary smoothly, the fractal di-
mension varies smoothly for a real terrain surface. Therefore, a mapping to
the central four pixels should not decrease the reliablility of the estimate
significantly, but will decrease the number of FFTs performed and least-
squares calculations.

A total of three sets of fractal surfaces were synthesized using (1) the MPD
method, (2) the PSD method with the DFT magnitudes derived according to
the ensemble average expression (eq (11)), and, finally, (3) the PSD method
with the DFT magnitudes derived according to the single-realization ex-
pression (eq (10)). The fractal dimensions chosen for the global constructs
were 2.0, 2.2, 2.4, 2.6, 2.8, and 3.0. The same seed for the random number
generator was used for creating all synthetic surfaces. Global constructs
were created which were 512 x 512, then segmented into four blocks of 256
X 256 each. This led to a total of 72 surfaces for estimation purposes.

Estimation of the fractal dimension was performed by first taking a local
8 x 8 window, zero padding to 16 x 16, and computing the FFT. The spec-
tral decay parameter B was determined as the slope of the logarithmic least-




3. Results

Table 1. Mean,
variance, and mamse
of 250 x 250 fractal
dimension arrays
resulting from PE
estimation on MPD
constructs.

squares fit for log (power) versus log (radial frequency) and then used to
calculate the fractal dimension, which is mapped back to the central four
pixels of the 8 x 8 window. Finally, the window is slid by two pixels and
the process repeated. This generates a 250 X 250 array of fractal dimension
values for each 256 x 256 fractal surface. First- and second-order statistics
were calculated for each fractal dimension array.

A total of 72 surfaces were synthesized and subjected to the PE estimation
algorithm. Tables 1 to 3 list the three classes of fractal surfaces created and
their estimated fractal dimensions, variance of the estimate, and the contri-
bution to the modified average mean square error (mamse) for each 256 x
256 block. The mamse was calculated from a fractal dimension array ac-
cording to the following [30]:

‘2

mamse =—]%/— ﬁ | Df - Df; (14)

n=1

b

with Df = global fractal dimension for 512 x 512 block and Df. = the mean
fractal dimension for nth 256 x 256 subblock.

File Fractal dimension ~ Variance Modified
estimate average mean
square error

test201md.img 2.3161 0.0649 0.0999
test202md.img 2.2135 0.0775 0.0456
test203md.img 2.0339 0.0588 0.0011

* test204md.img 1.9885 0.0493 0.0001
test221md.img 2.4445 0.0512 0.0598
test222md.img 2.4440 0.0681 0.0595
test223md.img 2.2288 0.0550 0.0008
test224md.img 2.2161 0.0499 0.0003
test241md.img 2.6802 0.0403 0.0785
test242md.img 2.6783 0.0542 0.0774
test243md.img 2.5557 0.0535 0.0242
test244md.img 2.5318 0.0491 0.0174
test261md.img 2.9331 0.0337 0.1109
test262md.img 2.9033 0.0448 0.0920
test263md.img 2.8769 0.0481 0.0767
test264md.img 2.8401 0.0452 0.0576
test281md.img 3.1536 0.0304 0.1250
test282md.img 3.1113 0.0400 0.0969
test283md.img 3.1251 0.0413 0.1057
test284md.img 3.1089 0.0411 0.0954
test301md.img 3.3195 0.0287 0.1021
test302md.img 3.2743 0.0362 0.0752
test303md.img 3.2945 0.0359 0.0867
test304md.img 3.2991 0.0369 0.0895

Files are mid-point displacement realizations with fractal dimensions
2.0,2.2,24, 2.6, 2.8, and 3.0.
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Table 2. Mean, File Fractal dimension Variance Modified

variance, and mamse estimate average mean
of 250 x 250 fractal square error
dimension arrays n2psd201.img 1.9760 0.0479 0.0006
resulting from PE n2psd202.img 1.9529 0.0272 0.0022
estimation on ensemble n2psd203.img 2.0356 0.0275 0.0013
average PSD n2psd204.img 2.0107 0.0498 0.0001
constructs. n2psd221.img 2.0853 0.0423 0.1147
n2psd222.img 2.0377 0.0240 0.0263
n2psd223.img 2.1528 0.0252 0.0022
n2psd224.img 2.1479 0.0430 0.0027
n2psd241.img 2.3306 0.0393 0.0048
n2psd242.img 2.2766 0.0239 0.0152
n2psd243.img 2.3969 0.0249 0.0000
n2psd244.img 2.4086 0.0385 0.0001
n2psd261.img 2.6247 0.0361 0.0006
n2psd262.img 2.5894 0.0242 0.0001
n2psd263.img 2.6907 0.0252 0.0082
n2psd264.img 2.7121 0.0358 0.0126
n2psd281.img 29198 0.0343 0.0144
n2psd282.img 2.9100 0.0252 0.0121
n2psd283.img 2.9794 0.0260 0.0322
n2psd284.img 3.0064 0.0344 0.0426
| n2psd301.img 3.2008 0.0348 0.0403
- n2psd302.img 3.2130 0.0283 0.0454
n2psd303.img 3.2408 0.0284 0.0580
n2psd304.img 3.2034 0.0323 0.0414

Files are power spectral density ensemble average realizations with
Jfractal dimensions 2.0, 2.2, 2.4, 2.6, 2.8, and 3.0.

Talzle 3. Mean, File Fractal dimension Variance Modified
variance, and mamse estimate average mean
of 250 x 250 fractal square error
dimension array sr2psd201.img 2.0740 0.0562 0.0055
resulting from PE sr2psd202.img 1.9762 0.0322 0.0006
estimation on single sr2psd203.img 2.1283 0.0594 0.0165
realization PSD sr2psd204.img 2.0411 0.0280 0.0017
constructs. sr2psd221.img 2.1370 0.0312 0.0039
sr2psd222.img 2.2210 0.0535 0.0004
sr2psd223.img 2.2749 0.0526 0.0056
sr2psd224.img 22147 - 0.0277 0.0002
sr2psd241.img 2.3974 0.0308 0.0000
sr2psd242.img 2.4442 0.0438 0.0019
sr2psd243.img 24928 0.0434 0.0086
sr2psd244.img 2.4785 0.0291 0.0062
sr2psd261.img 2.6982 0.0305 0.0096
sr2psd262.img 2.7015 0.0376 0.0103
sr2psd263.img 2.7484 0.0386 0.0220
sr2psd264.img 2.7643 0.0301 0.0269
sr2psd281.img 2.9880 0.0311 0.0353
sr2psd282.img 2.9646 0.0339 0.0271
sr2psd283.img 3.0049 0.0361 0.0420
sr2psd284.img 3.0417 0.0322 0.0584
sr2psd301.img 3.2126 0.0312 0.0452
sr2psd302.img 3.2138 0.0331 0.0457
sr2psd303.img 3.2520 0.0361 0.0635
sr2psd304.img 3.2780 0.0338 0.0773

Files are power spectral density single realizations with fractal dimensions
2.0,2.2,24,2.6, 2.8 and 3.0.
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Figure 1. Plot of global
mean for each 512 X
512 block processed
with PE estimation
compared to global
fractal dimension used
in original synthesis of
512 x 512 constructs.

The trend in the increase of the mamse in both the single realizations and
ensemble averages shows the difficulties in estimation of the higher dimen-
sions using the rectangular window; however, the results at lower dimen-
sions are very encouraging. The low variance indicates the uniformity of
the globally generated fractal surfaces.

Figure 1 plots the various estimates obtained against fractal dimension. Fig-
ures 2 to 5 are representative surface plots and DFTs of the single-realiza-
tion PSD and MPD surfaces produced by Gouraud shading with an over-
head light source. A brief remark is in order about the DFT figures. They
were created by taking a 32 x 32 section of the original 256 X 256 DFT
(single realization) and displaying the absolute value of the spatial fre-
quency coefficients from (k,[) = (1,1) to (k,]) = (32,32); the axes are re-
versed since the sample section was taken from the DFT region (k,l) =
(224,224) to (k,l) = (255,255), which is analogous by symmetry.

Closer inspection of the MPD DFTs suggests that extra power resides along
the spatial frequency axes, thus affecting the PE estimation algorithm, and,
in fact, the reliability of the MPD method has been questioned before with
regard to synthesizing fractal Brownian motion for any persistence param-
eter H deviating from 1/2 [27]. The slight increase in the power residing
along the spatial-frequency axis of the PSD DFTs can be accounted for by
the inherent periodicity of the construct; therefore, N/4 X N/4 samples as
used in Moghaddam’s work is probably preferred and may have led to a
more accurate fractal sample. Figures 6 to 9 are representative of the 3-D
surfaces produced by the different synthesis algorithms and show the
rougher texturing of the MPD method for identical fractal dimensions. The
original surfaces were constructed using floating-point representation; how-
ever, they were byte-scaled for 3-D plotting—thus the z-axis range of 0 to
255 in figures 6 to 9.
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Figure 2. Synthetic 300
fractal surfaces and 0
corresponding DFTs

created by single 200 &
realization PSD and

MPD methods with 150
fractal dimension 2.0.
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Figure 3. Synthetic ~ 300 [
fractal surfaces and
corresponding DFTs
created by single 200
realization PSD and

MPD methods with N
fractal dimension 2.2.
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Figure 4. Synthetic
fractal surfaces and
corresponding DFTs
created by single
realization PSD and
MPD methods with
fractal dimension 2.4.

Figure 5. Synthetic
fractal surfaces and
corresponding DFTs
created by single
realization PSD and
MPD methods with
fractal dimension 2.6.

150
100

50

O %
0 50 100 150200 250 300
PSD fdim=2.4

ps0 FFT

= |

0 50 100 150200 250 300
PSD fdim=2.6

psD FFT

150

100

50

0
0 50 100 150200250 300
MD fdim=2.4

Mo FFT

0 50 100 150200 250 300
MD fdim=2.6
o FFT

15




Figure 6. Typical
fractal surfaces
synthesized by
ensemble average PSD
and MPD algorithms
using a fractal
dimension of 2.0.
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Figure 7. Typical 2P
fractal surfaces i "
synthesized by
ensemble average PSD
and MPD algorithms
using a fractal
dimension of 2.2.
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Figure 8. Typical
fractal surfaces
synthesized by
ensemble average PSD
and MPD algorithms -
using a fractal
dimension of 2.4.

Figure 9. Typical
fractal surfaces
synthesized by
ensemble average PSD
and MPD algorithms
using a fractal
dimension of 2.6.
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Table 4. Global mean,
variance, and mamse
for each 512 x 512
block synthesized by
three techniques and
processed with PE
estimator. (Expected
fractal dimension is
simply value used in
original constructs.)
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Table 4 shows the average values for the estimates in tables 1 to 3, and
these average values for the fractal dimension are plotted in figure 1. The
key in figure 1 indicates the three classes of images produced with “Ex-
pected Fdim,” indicating a perfect estimate based on the fractal dimension
used for synthesis, “PSD ens. Fdim,” indicating the results of estimating the
PSD ensemble average surfaces, “PSD sr. Fdim, ” indicating the results of
estimating the PSD single realization surfaces and, last, “MD point Fdim,”
containing the results of estimation applied to the MPD synthesized sur-
faces. These results show quite clearly the tracking of the fractal dimension
by the simple estimator over the desired range with an increasing deviation
from the true fractal dimension after a 2.5 fractal dimension. Results similar
to this were achieved with other seed values used in the random number
generator for producing PSD surfaces as well.

The algorithm was developed using the PV-Wave command language and
is currently not optimized for speed. The execution time for the algorithm
has not been determined. The unoptimized PV-Wave version executes an
estimation in 260 s, including the system overhead; this time is similar to
Moghaddam’s [29] optimized C version.

Fractal Expected Calculated Variance Modified
surface fractal fractal average mean
type dimension dimension square error
MPD method
2.0 2.1380 0.0622 0.0190
22 2.3333 0.0558 0.0178
24 2.6115 0.0491 0.0447
2.6 2.8884 0.0428 0.0831
2.8 3.1247 0.0381 0.1055
3.0 3.2968 0.0344 0.0881
PSD method ensemble average
2.0 1.9938 0.0373 0.0011
22 2.1059 0.0330 0.0111
2.4 2.3518 0.0312 0.0050
2.6 2.6542 0.0301 0.0054
2.8 2.9539 0.0298 0.0253
3.0 3.2145 0.0309 0.0463
PSD method single realization
2.0 2.0549 0.0429 0.0047
2.2 2.2119 0.0403 0.0025
2.4 2.4532 0.0364 0.0042
2.6 2.7281 0.0341 0.0172
2.8 2.9998 0.0333 0.0407
3.0 3.2391 0.0335 0.0579

Values are the averages from tables 1 to 3 with the calculated fractal dimensions
plotted on plot 1. '




4. Conclusions

The PE method remains a possible candidate for “real-time” processing of
the fractal dimension with subsequent texture classification and segmenta-
tion. The relatively low variance and mamse demonstrate the algorithm’s
accuracy over the limited range of interest.

The effect of the rectangular window was apparent at the higher dimensions
due to side-lobe leakage and therefore must be questioned for the segmen-
tation of tree clutter [13] and probably other types of clutter that exhibit a
high fractal dimension. To circumvent this problem, an adaptive estimation
routine may be useful that uses the results of Bovik and Super [9], together
with the simple algorithm given here.

The estimator results show no significant difference between estimating the
ensemble average as opposed to the single realizations. This should be ex-
pected since the DFT's of an 8 x 8 local window derived from the ensemble
average are indistinct from those DFTs taken from single realizations. The
only differences I observed were in taking global estimates (unpublished
finding) of the surfaces and the slight increase in the variance. This indi-
cates the viability of the estimation technique to “real terrain” (single real-
ization) and not just well-behaved laboratory models.

The presence of artifacts within a mid-point displacement rendering [5]
probably contributes to the extra power distributed along the spatial-
frequency axis (see fig.1, lower right corner), thus perturbing the estimation
of the fractal dimension. A path to further resolving this issue is in generat-
ing fractals using the random additions refinement to the MPD method and
performing the estimation [5].

Future work will involve the optimization of the PSD synthesis routine and
PE estimation algorithm in C and should be included in the KHOROS
image-processing software for future use. An optimized version of the PE
algorithm could reduce the processing time by, at minimum, a factor of
four. Accurate measurements of the optimized code will be performed, as
well as the texture analysis and segmentation of synthetic composite sur-
faces, natural surfaces, and SAR images.
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